

A Tip for Enabling Taint Analysis of Contact Information in TaintDroid

Han-Jae Yoon

Hannam Univ. Computer Engineering

70, Hannam-ro, Daedeok-gu

Deajoen, Republic of Korea

hanjae.karoha@gmail.com

Man-Hee Lee

Hannam Univ. Computer Engineering

70, Hannam-ro, Daedeok-gu, Hannam Univ.

Deajoen, Republic of Korea

manheelee@hnu.ac.kr

Abstract

As Android malware keeps increasing, automatic

analysis using virtual environments becomes very

necessary. Among them, TaintDroid is famous for its

tainting analysis functionality. Before running malware

under test, concerned information is tainted (or marked),

and TaintDroid keeps tracking the tainted data wherever it

moves around. When it leaves Android system, an alert is

generated for further analysis. While we analyzed a

malicious app that leaks contact information, we found

TaintDroid could not detect the app. In this paper, we

presented what caused the situation and proposed a tip to

make it possible.

Keywords-component; malware, Android, Tainting Analysis,

TaintDroid

I. Introduction

The malware trend is rapidly changing from desktop-based

to smartphone-based. According to [1][2], cyber threats on

smartphone are becoming very serious.

Automatic analysis of malicious app is essential to cope with

this problem. Automatic analysis tools are categorized into

static or dynamic. Static analysis is done to source codes or

packaged Android application package (APK) to look for

various aspects of the app such as permission, strings, Android

Manifest, so on[3]. In dynamic analysis, Android application

under test is actually run on virtual or real systems. Then, its

behavior is monitored for investigating into security related

issues.

DroidBox with TaintDroid is a famous dynamic analysis tool

for its ability of tainting analysis [4][5]. To taint some data

means that a flag is marked on the data. Whenever data

assignments occur, its flag was copied to the newly assigned

data. It is believed that the tainting analysis would be the most

powerful anti-data leak technique.

However, we found an interesting malicious app called

contactleak. The contactleak is known to leak contact

information. So we expected that it will be simply detected by

TaintDroid, but to our surprise TaintDroid does not report the

data leakage of contact information. We investigated into this

issue and figured out what happened. The contactleak first

checked whether there is contact information in an Android

system that the app is installed. If there is nothing to leak, it

cannot send data. Since a clean Android image kept be used at

every malware analysis, there was no contact information on

the image. This is why TaintDroid could not detect the

contactleak.

In this paper, we showed this symptom and provided a simple

tip to detect the contactleak. It is to insert contact data before

running the contactleak. To do so, we developed an Android

app to do so and run it before contactleak. After this remedy,

the contactleak was detected well. Although this finding and

the proposed tip may look very simple, our research would be

very helpful to other Android malware analysts.

II. Detection Failure of Contact Information Leakage App

A. Malware analysis: AlSalah

Figure 1 shows a snapshot of AlSalah. Its advertised function

is to inform users five Salah (prayer in Islam) timings.

According to Symantec [6], AlSalah a Trojan horse for

Android devices that sends spam SMS messages to contacts on

the compromised device. It also gathers the contacts on the

compromised device and send each to predefined lists of URLs.

Figure 1. snapshot of AlSalah

B. Detection Failure of TaintDroid

Since TaintDroid sets contact information as private data, it

tracks contact information. So we expected TaintDroid would

detect it as TAINT_CONTACT, but to our surprise it did not

do so. We investigated this issue and found out that AlSalah

looked for contact information but could not find anything

because a new TaintDroid image does not carry any contact

information.

III. Enabling Contact Information Leakage App Detection

A. Approaches for Fixing:

To fix this problem, we considered two approaches. First, we

could program a simple app to insert a contact into the list. The

other is to modify TaintDroid to have at least one contact

information. Based on complexity of implementation, the first

approach is more preferable. But we chose to modify

TaintDroid for two reasons.

The first reason is the performance problem. When the first

approach is applied, the contact inserting app needs to be

installed and run prior to installation of AlSalah. We created an

app for test and experimented on TaintDroid ten times. It takes

29.41 seconds on average. The time may look short to some

people, but it is huge time waste because installing and running

malware under test takes the similar amount of time. That is, the

total analysis time would be doubled. Considering that virtual

environment is commonly used for testing a huge number of

malware, such performance overhead is too big.

The second reason is the test complexity. Please imagine that

every TaintDroid user needs to run the contact insertion app

before testing each app. That would be almost impossible

scenario. This is why we decided to modify TaintDroid. If users

take our approach, they simply modify TaintDroid once and

keep using the modified image.

B. Modification of TaintDroid

We decided to modify TelephoyProvider class [7]. When the

Android system is booted up, it makes an access point name

(APN) that is a gateway between a mobile network and the

Internet [8]. Internet accessibility is essential for smart phones

so the class’s activity should be run at least once. Because of

this, we chose the TelephoyProvider class as a target

modification class.

onCreate() method in TelephonyProvider.java shown in

Figure 2 is to initialize activity of the class. The newly created

source codes are composed of four parts. The first part is to

prepare a container, ops, for a contact information. The second

is to write a phone number, “7894156”, to the container. Then,

we write a contact name, “Mr.FAKE”, to the containter. Finally,

we write the container’s information to the system’s contact

information by calling

getContext().getContentResolver().applyBatch(ContactsContr

act.AUTHORITY, ops). Figure 3 shows a screen capture of the

TaintDroid when we check the contact information.

public class TelephonyProvider extends ContentProvider

{

 public boolean onCreate() {

 ArrayList<ContentProviderOperation> ops =

new ArrayList<ContentProviderOperation>();

 int rawContactInsertIndex = ops.size();

 //preparations

ops.add(ContentProviderOperation.newInsert(RawContacts

.CONTENT_URI)

 .withValue(RawContacts.ACCOUNT_TYPE, null)

 .withValue(RawContacts.ACCOUNT_NAME,

 null).build());

 //Phone Number

 ops.add(ContentProviderOperation

 .newInsert(ContactsContract.Data.CONTENT_URI)

 .withValueBackReference(ContactsContract.

Data.RAW_CONTACT_ID,

 rawContactInsertIndex)

 .withValue(Data.MIMETYPE, android.provider.

ContactsContract.CommonDataKinds.

Phone.CONTENT_ITEM_TYPE)

 .withValue(android.provider.ContactsContract.

CommonDataKinds.Phone.NUMBER, "7894156")

 .withValue(Data.MIMETYPE, android.provider.

ContactsContract.CommonDataKinds.

Phone.CONTENT_ITEM_TYPE).

withValue(android.provider.

ContactsContract.CommonDataKinds.

Phone.TYPE, "1").build());

 //Contact Name

 ops.add(ContentProviderOperation

 .newInsert(ContactsContract.Data.CONTENT_URI)

 .withValueBackReference(Data.RAW_CONTACT_ID,

 rawContactInsertIndex)

 .withValue(Data.MIMETYPE, StructuredName.

CONTENT_ITEM_TYPE)

 .withValue(StructuredName.DISPLAY_NAME,

 "Mr.FAKE").build());

 try {

 ContentProviderResult[] res =

getContext().getContentResolver().

applyBatch(ContactsContract.

AUTHORITY, ops);

 } catch (RemoteException e) {

 e.printStackTrace();

 } catch (OperationApplicationException e) {

 e.printStackTrace();

 }

 Taint.log("inject success");

 return true;

 }

 ...omission...

}
Figure 2. Edited TelephonyProvicer.java

Figure 3. Result of contact information inject

IV. Experiments

With the newly modified TaintDroid, we tested AlSalah

again. Figure 4 shows the dataleaks part of the resulting json

file generated by TaintDroid. Different from the result when

using the original TaintDroid, the dataleaks part provides

information about a leaking event. We can understand that a

file, “contacts.en_US.dict.temp”, was written to a certain path,

“/data/data/com.android.inputmethod.latin/files”, and the file

contains contact information with the TAINT_CONTACTS

tag.

Please note that the data leak events are different from what

we expected. As Symantec reported, this app is supposed to

send contact information to a list of web sites, but we could not

find such information. Its reason is that all the web sites were

already closed so the app could not send out any packets to the

sites. If there were any sites available, we could have found

other data leak events, too.

"dataleaks": {

 "3.6312878131866455": {

 "Method": "None",

 "Package": "None",

 "data": "023046414b451f28344d721f28530d",

 "id": "962167312",

 "operation": "write",

 "path": /data/data/com.android.inputmethod.latin/files

/contacts.en_US.dict.temp",

 "sink": "File",

 "tag": [

 "TAINT_CONTACTS"

],

 "type": "file write"

 }

 },

Figure 4. Analysis result

V. Conclusion

In this paper, we looked for a TaintDroid’s detection failure

case that TaintDroid could not detect a data leak malware,

AlSalah. We found it is caused because there is no contact

information in the clean TaintDroid image. To solve this

problem, we decided to modify TaintDroid for better

performance and testability. Among many classes, we chose

TelephonyProvider class because its activity is run at least once

for Android system’s internetworking. After inserting a contact

list, TaintDroid was able to detect AlSalah successfully. We

hope this tip for enabling TaintDroid’s data leak detection for

contact information will be helpful to other users.

References

[1] Pew Research Center, “Smartphone Ownership and Internet

Usage Continues to Climb in Emerging Economies”, 2016.2.J.

Clerk Maxwell, A Treaties on Electricity and Magnetism, 3rd ed.,

Vol. 2, Oxford: Clarendon Press, 1892, pp. 68-73.

[2] Intel Security “McAfee Labs Threats Report”, 2015.8.

[3] https://android-arsenal.com/tag/94

[4] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox,

Jaeyeon Jung, Patrick McDaniel and Anmol N. Sheth,

“TaintDroid: An Information-Flow Tracking System for Realtime

Privacy Monitoring on Smartphones”, TOCS, Volume 32 Issue 2,

June 2014, Article No. 5.

[5] Michael Spreitzenbarth, Felix Freiling, Florian Echtler, Thomas

Schreck, Johannes Hoffmann, “Mobile-sandbox: baving a deeper

look into android applications”, SAC13, pages 1808-1815

[6] Symantec https://www.symantec.com/security_response/writeup

.jsp?docid=2011-121915-3251-99

[7] https://android.googlesource.com/platform/packages/provi

ders/TelephonyProvider/+/4167fcc/src/com/android/provi

ders/telephony/TelephonyProvider.java

[8] Wikipedia https://en.wikipedia.org/wiki/Access_Point_Name

